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Purpose 

This report summarises the results of the activity “Assessment of climate time series of total 

column water vapour against climate indices (VaKaS)” which was dedicated to support the 

GEWEX water vapor assessment (G-VAP). The report is part of the Appendix of the G-VAP 

final report, and its executive summary may be included in the main part of the final report. 

1 Executive summary 

A total of eight TCWV datasets were compared against nine climate indices. TCWV datasets 

included three re-analyses datasets, three purely observational datasets and two climate model 

datasets. All data sets were collocated on a 1x1 degree grid and comparisons were performed 

on monthly anomalies for the time period 1988 to 2008. Emphasis was put on identifying 

regions where TCWV datasets showed significant correlations with the climate indices.  

For all climate indices on SST (e.g. ENSO), all data sets agreed well in term of reproducing 

spatial correlation patterns. For indices based on the atmospheric state (e.g. AO), the climate 

model data sets showed significantly weaker correlations that the observational or re-analysis 

datasets. 

2 Introduction 

In a Joint Letter from the Global Climate Observing System (GCOS) and the World Climate 

Research Programme (WCRP) the general need for coordinated international assessments of 

climate products was formulated. Such assessments are important mechanisms for 

improvements and to enhance and promote utilisation. The GEWEX Data and Assessments 

Panel (GDAP) has initiated G-VAP in 2011. The major purpose of G-VAP is to: 

 Quantify the state of the art in water vapour products being constructed for climate 

applications, and by this; 

 Support the selection process of suitable water vapour products by GDAP for its 

production of globally consistent water and energy cycle products.  

The results of the first two workshops together with feedback from the first GDAP meeting 

were used for setting up the G-VAP assessment plan. This plan is available at 

http://www.gewex-vap.org and summarizes scope and goals of the assessment, introduces 

science questions and provides details on the planned technical and scientific activities. The 

focus of G-VAP is to assess the fitness of long-term satellite based data records for climate 

applications, mainly through an analysis of their stability and to explain potential 

inconsistencies among those records. 

This report presents the results of the study “Assessment of climate time series of total column 

water vapour against climate indices (VaKaS)” commissioned by Deutscher Wetterdienst 

(DWD) in 2013.  

In total, eight TCWV climate time series comprising observational data, re-analyses as well as 

climate model results were analysed against a set of nine climate indices with the aim to 

evaluate the different TCWV products against the different climate indices and provide 

information about commonalities and differences between the different datasets. 

This report is structured as follows: Section 3 provides a short description of the climate time 

series and indices used within this study. Section 4 outlines the preparatory processing 

performed in order to map all datasets onto a common spatial and temporal grid. Section 5 then 

describes the statistical analysis performed and the results obtained. Appendix A provides 

correlation maps for all individual datasets and against all climate indices and Appendix B lists 

all products derived in the context of the present project. 

http://www.gewex-vap.org/
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3 Data 

A brief description of the eight investigated TCWV climate time series is provided in the 

following subsections. These datasets can be subdivided into satellite observation based 

datasets, reanalyses using data assimilation techniques, as well as climate model derived 

datasets that have been obtained without data assimilation but with prescribed sea surface 

temperature fields. For detailed information on the individual datasets, we refer to the 

references provided in the text. 

3.1 Satellite-based and merged products 

3.1.1 HOAPS 

The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data1 (HOAPS) set 

[Andersson et al., 2011] is a completely satellite based climatology of precipitation, evaporation 

and freshwater budget (evaporation minus precipitation) as well as related turbulent heat fluxes 

and atmospheric state variables over the global ice free oceans. All variables are derived from 

Special Sensor Microwave Imager (SSM/I) passive microwave radiometers on-board the 

Defense Meteorological Satellite Program (DMSP) platforms F08, F10, F11, F13, F14 and F15, 

except for the sea surface temperature (SST), which is taken from Advanced Very High 

Resolution Radiometer (AVHRR) measurements. HOAPS is only available over the global ice-

free oceans.  

HOAPS was jointly developed by the University of Hamburg and the Max Planck Institute for 

Meteorology and has meanwhile successfully been transferred to CM SAF (Satellite 

Application Facility on Climate Monitoring). The most recent release Version 3.2 is based on 

homogenized SSM/I observations and covers the years 1987 to 2008. 

3.1.2 RSS 

The RSS dataset is a merged total column water vapour (TCWV) data set for the global oceans 

using the version-7 (V7) passive microwave geophysical ocean products [Hilburn and Wentz, 

2008] publicly available from Remote Sensing Systems2. The product is available from January 

1988 to the date of the most recent processing. 

The TCWV values come from all SSM/I instruments (F08 through F15), the F16 and F17 

Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Microwave Scanning 

Radiometer for EOS (AMSR-E) and WindSat. These microwave radiometers have been 

carefully intercalibrated at the brightness temperature level and the V7 ocean products have 

been produced using a consistent processing methodology for all sensors. 

3.1.3 NVAP-M 

NASA’s Making Earth Science Data Records for Use in Research Environments (MEaSUREs) 

program3 began in 2008 and has the goal of creating reliable and widely accepted Earth system 

data records for a variety of geophysical time series. NVAP-M4, derived within this framework, 

refers to the NASA Water Vapor MEaSUREs (briefly NVAP-M) and spans over the time period 

1988 to 2009. NVAP-M is further described in Vonder Haar et al. [2012].  

Input sources include SSM/I–based TCWV values over ocean, High-resolution Infrared 

Radiation Sounder (HIRS) water vapour over land and ocean, Atmospheric Infrared Sounder 

                                            
1 http://www.hoaps.zmaw.de/ (URL tested: 2014-09-02) 
2 http://images.remss.com/ssmi/ssmi_data_daily.html (URL tested: 2014-09-02) 
3 https://earthdata.nasa.gov/our-community/community-data-system-programs/measures-projects 
(URL tested: 2014-09-02 
4 http://nvap.stcnet.com/ (URL tested: 2014-09-02) 

http://www.hoaps.zmaw.de/
http://images.remss.com/ssmi/ssmi_data_daily.html
https://earthdata.nasa.gov/our-community/community-data-system-programs/measures-projects
http://nvap.stcnet.com/
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(AIRS) from 2002 onwards, and observations from the Integrated Global Radiosonde Archive 

(IGRA). 

3.2 Reanalysis products 

3.2.1 ERA-Interim 

ERA-Interim5 (Simmons et al. 2007, Dee et al. 2011) is a third generation global atmospheric 

reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). 

It improves on previous versions (e.g. ERA-40) by using an improved atmospheric model and 

assimilation system (ECMWF, 4D-VAR, 2006). The spatial resolution of the data set is 

approximately 80 km (T255 spectral) on 60 vertical levels from the surface up to 0.1 hPa. 

Among others, it assimilates a long list of satellite radiances, (e.g. SSM/I and SSMIS). ERA-

Interim is available since 1979 and is continuously updated. For this study monthly gridded 

TCWV products were used. 

3.2.2 MERRA 

The Modern Era Retrospective-Analysis for Research and Applications (MERRA, Rienecker 

et al. 2011) was generated with version 5.2.0 of the Goddard Earth Observing System (GEOS) 

atmospheric model and data assimilation system (DAS). The MERRA time period covers the 

modern era of remotely sensed data, from 1979 through the present, and the special focus of 

the atmospheric assimilation is the hydrological cycle. MERRA has a native model resolution 

of 0.5° (latitude) x 0.667° (longitude) with 72 vertical levels. 

3.2.3 CFSR 

The Climate System Forecast Reanalysis (CFSR, Saha et al. 2010) is also a third generation 

global reanalysis product. The CFSR global atmosphere resolution is ~38 km (T382) with 64 

vertical levels covering the time period from 1979 to 2010. It includes atmosphere-land-ocean-

sea ice coupling and (in addition to assimilating satellite radiances) uses observed precipitation 

from Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) 5-day mean 

and daily CPC gauge analysis. The analysis system used in CFSR for the atmosphere, the Grid-

point Statistical Interpolation (GSI) scheme, is nearly identical to the one used in MERRA 

(3DVAR, 2009). 

3.3 Climate models 

3.3.1 EC Earth 

The EC Earth (ECE) 1-degree TCWV dataset has been obtained from atmosphere only global 

climate model simulations, using prescribed observed sea-surface temperatures and prescribed 

sea ice for the time period 1979-2008. The ECE global climate model (Hazeleger et al 2010) 

has been developed from the ECWMF model (http://ecearth.knmi.nl/). The atmospheric 

component is based on ECMWF's Integrated Forecasting System (IFS), cycle 31r1 with some 

additional implementation, including a new convection scheme and the new land surface 

scheme H-TESSEL. Small changes in the gravity wave drag and shortwave radiation 

parameterisations have also been applied to reproduce the observed climatology of the past 40 

years as closely as possible and to achieve a balanced radiation budget. 

For this study the model was run at T159 (125km) horizontal spectral resolution with 62 vertical 

levels. 

                                            
5 http://www.ecmwf.int/en/forecasts/datasets/era-interim-dataset-january-1979-present (URL tested: 
2014-09-05) 

http://ecearth.knmi.nl/
http://www.ecmwf.int/en/forecasts/datasets/era-interim-dataset-january-1979-present
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3.3.2 MPI-ESM 

The Earth System Model of the Max Planck Institute for Meteorology (MPI-ESM) couples 

atmosphere, ocean and land surface through the exchange of energy, momentum, water, and 

important trace gases such as carbon dioxide. It has been used for comparative model 

calculations in the context of CMIP5, which constitute the German contribution to the Fifth 

Assessment Report of the IPCC (Intergovernmental Panel on Climate Change). It is based on 

the components of ECHAM6 for the atmosphere and MPIOM for the ocean as well as JSBACH 

for the terrestrial biosphere and HAMOCC for the ocean´s biogeochemistry. The coupling of 

atmosphere and land on the one hand and ocean and biogeochemistry on the other hand is made 

possible by the separate coupling program OASIS3. Energy, momentum, water and CO2 are 

exchanged with the help of this coupling. Further details and evaluation results can be found in 

Müller et al. (2012) and Pohlmann et al. (2013).  

For this study, we used output from AMIP type simulations using observational based sea 

surface temperature (SST) and sea ice boundaries (Stevens et al., 2013) in low resolution at 

1.875°. 

3.4 Climate indices 

The above TCWV datasets were evaluated against a variety of climate indices which are 

described in detail in Table 1 and plotted in Figure 1. The common time period for all datasets 

is highlighted in grey in Figure 1. 

Table 1: Climate Indices used in this study. 

Index Description Reference Source 

NINO34 El Nino Southern Oscillation 

Index 3.4. 

Average sea surface temperature 

anomaly in the region between 

5°N and 5°S as well as 170°W 

and 120°W. 

Rasmusson and 

Carpenter (1982) 

Walker (1924) 

http://www.esrl.noaa.gov

/psd/data/climateindices/

list/ 

PDO Pacific Decadal Oscillation. 

The PDO is defined as the leading 

principal component of North 

Pacific monthly sea surface 

temperature variability (pole ward 

of 20N for the 1900-93 period). 

Mantua et al. (1997)  

Zhang et al. (1997) 

http://jisao.washington.e

du/pdo/ 

AO Arctic Oscillation. 

The daily AO index is constructed 

by projecting the daily (00Z) 

1000mb height anomalies pole 

ward of 20°N onto the loading 

pattern of the AO. 

Thompson and Wallace 

(1998) 

http://www.cpc.ncep.noa

a.gov/products/precip/C

Wlink/daily_ao_index/ao

.shtml  

NAO North Atlantic Oscillation. 

The principal component (PC)-

based indices of the NAO are the 

time series of the leading EOF of 

sea level pressure anomalies over 

the Atlantic sector, 20°-80°N, 

90°W-40°E. 

Barnston and Livezey 

(1987) 

Hurrell (1995) 

Rogers (1984) 

Walker (1924) 

https://climatedataguide.

ucar.edu/climate-

data/hurrell-north-

atlantic-oscillation-nao-

index-pc-based 

http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://jisao.washington.edu/pdo/
http://jisao.washington.edu/pdo/
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.loading.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.loading.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
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Index Description Reference Source 

AMM Atlantic Meridional Mode. 

The AMM spatial pattern is 

defined via applying Maximum 

Covariance Analysis (MCA) to 

the SST and the 10m wind field 

over the time period 1950-2005 

over the region 21°S to 32°N, and 

74° W to 15°E). 

Chiang and Vimont 

(2004) 

http://www.esrl.noaa.gov

/psd/data/timeseries/mon

thly/AMM/ 

AMO Atlantic Multidecadal Oscillation. 

The AMO is based upon the 

average anomalies of SSTs in the 

North Atlantic basin, typically 

over 0°N to 80°N. 

Schlesinger and 

Ramankutty (1994) 

https://climatedataguide.

ucar.edu/search/node/A

MO 

GHG Greenhouse gas forcing from 

NASA GISS  

Hansen et al. (2005) http://data.giss.nasa.gov/

modelforce/  

SSO2 Stratospheric SO2 forcing from 

NASA GISS 

Hansen et al. (2005) http://data.giss.nasa.gov/

modelforce/  

SOL Solar forcing from NASA GISS Hansen et al. (2005) http://data.giss.nasa.gov/

modelforce/  

 

http://www.esrl.noaa.gov/psd/data/timeseries/monthly/AMM/
http://www.esrl.noaa.gov/psd/data/timeseries/monthly/AMM/
http://www.esrl.noaa.gov/psd/data/timeseries/monthly/AMM/
https://climatedataguide.ucar.edu/search/node/AMO
https://climatedataguide.ucar.edu/search/node/AMO
https://climatedataguide.ucar.edu/search/node/AMO
http://data.giss.nasa.gov/modelforce/
http://data.giss.nasa.gov/modelforce/
http://data.giss.nasa.gov/modelforce/
http://data.giss.nasa.gov/modelforce/
http://data.giss.nasa.gov/modelforce/
http://data.giss.nasa.gov/modelforce/
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Figure 1: The panels on the left show time series of the different climate indices listed in 

Table 1. The grey-shaded area in the left panels indicates the 1988-2008 period for which 

satellite and other water vapour data are evaluated. The right panels show corresponding 

autocorrelation coefficients for lag times between zero and 12 months. 

4 Methods 

4.1 Data processing 

The analysis is carried out on a common grid and time period. The common grid was defined 

as a regular longitude/latitude grid with a resolution of 1°×1° and centre location of the grid 

boxes between the full degree values, which leads to an array size of 360×180 pixels.  

ECE, NVAP-M and RSS were already provided at 1° spatial resolution and thus didn’t need to 
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be remapped. ERA-Interim were available at an array size of 360×181 pixels, which let us 

assume that latitude grid box midpoints were defined at full degree values. We decided to shift 

the entire array half degree south by deleting first array line to avoid additional extensive 

interpolation. 

The other four datasets (ESM, HOAPS, CFSR and MERRA) were re-gridded from their native 

resolutions. The ESM dataset has a spatial resolution of 1.875°×1.875° with an array size of 

192×96. HOAPS data are provided at a resolution of 0.5°×0.5° between 80°S and 80°N which 

leads to an array size of 720×320. CFSR and MERRA data have resolutions of 0.5°×0.5° 

(720×361) and 2/3°×0.5°, respectively (540×361) with latitude grid box midpoints defined 

similarly to ERA-Interim starting at full values. These dataset were gridded to the common 

1°×1° grid by linear interpolation with shifting the array 0.25° latitude towards South for CFSR 

and MERRA. 

The common period is defined the period jointly covered by all datasets which is the period 

between 1988 and 2008. We also processed data outside the above defined common period; for 

example, ERA-Interim, ESM, CFSR, and MERRA data have been processed from 1979 

onward.  

Monthly temporal resolution has been chosen for the common dataset. Except NVAP-M, all 

considered data sets were already available as monthly means. For NVAP-M, monthly means 

were calculated from the provided daily values. 

An inventory of all data products generated in the context of VaKaS in given in Appendix B. 

4.2 Statistical significance of correlations 

The statistical significance is assessed through temporal autocorrelation between time series 

(Bartlett, 1935; Dawdy and Matalas, 1964). A temporal autocorrelation will reduce the effective 

number of degrees of freedom in each dataset. Assuming the autocorrelation processes to be 

characterized by red noise yields an effective time scale T0 of independent samples of:  

 T0 =
1+ r1,x × r1,y

1- r1,x × r1,y
  (1) 

In our case, T0 is given in units of months and r1,x designates the lag-1 autocorrelation for dataset 

x. More generally, rL,x is the lag-L autocorrelation for dataset x with L being the time shift in 

months. The corresponding autocorrelation coefficients for dataset y are denoted analogously.  

For an arbitrarily auto-correlated variable, the equivalent formula is:  

 T0 =1+ 2 1-
L

N

æ

èç
ö

ø÷
rL ,x × rL,y

L=1

N

å   (2) 

The independent sample size is then given as:  

 Neff =
N

T0
, (3) 

with N being the number of months in the time series (N=720 for the 60-years’ time series 

shown in Figure 1, N=252 for the satellite time series 1988-2008). The correlation coefficient 

required to exceed the 95 % significance level is shown in Figure 2 as function of Neff. 
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Figure 2: Absolute correlation coefficients corresponding to a 95% statistical significance 

level as function of effective sample size Neff. Data are produced using a two-sided t-test. 

These values are used throughout this paper to assess the statistical significance of time 

series correlations with Neff calculated from Equations (2) and (3) for arbitrary temporal 

autocorrelations and Equations (1) and (3) for red noise, respectively. 

A few issues to note in the analysis and discussion of correlation coefficients and their 

significance: 

 All climate indices and water vapour fields were corrected for seasonal effects by 

subtracting from each monthly data point the long-term average over that month. We 

are thus interpreting monthly anomaly fields throughout this paper. 

 We are using two-sided t-tests, i.e. we are assuming the sign of the correlation to be 

unknown. This yields the most stringent significance criteria although in some cases one 

could argue the correlation has to have a certain sign. 

 We restrict most of the discussion below to red noise (Equation (1)) but do also provide 

results for the actual autocorrelation functions (Equation (2)) in Appendix A. The 

differences between both cases are mostly marginal and do not affect our findings.  

 The lower the temporal autocorrelation of a particular variable, the lower the correlation 

coefficient can be between that variable and any other variable without losing statistical 

significance. This is because the effective number of observations Neff will remain high 

by virtue of the product of the lag-1 autocorrelations showing up in Equation (1), 

respectively. Thus, if only one variable exhibits pure white noise, then N= Neff regardless 

of how highly auto-correlated the second variable is. 

 A statistically significant correlation coefficient does not necessarily imply causal or 

physical relation between two datasets (“correlation does not imply causation”). 

5 Results 

5.1 Statistical assessment of climate indices 

In this section we assess the different climate indices outlined in Table 1 statistically with 

respect to the following questions: 
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1. To what extent are the different climate indices independent of each other? 

2. All climate indices used herein go back at least until 1951. How similar is the period 

1988-2008 for which we have water vapour observations to the 60-years period 1951-

2010? 

To answer the first question we performed statistical significance tests on the correlation 

between different indices. The comparison was done on monthly anomalies which were 

normalized to zero mean and unit standard deviation. The resulting time series are shown in 

Figure 1. With the exception of AO and NAO, the lag-1 autocorrelation of the time series is 0.9 

or higher and clearly none of the time series exhibits a pure white noise behaviour (which would 

result in a lag-1 autocorrelation of zero). Thus, in most cases the effective sample size is 

significantly lower than the actual sample size.  

The correlation coefficients between the different climate indices are shown in Figure 3. The 

variance explained by regressing y against x is equal to r². Since the resulting standard 

deviations for any two datasets x and y are unity, the correlation coefficient r is identical to the 

regression slope between the two datasets. Performing a two-sided t-test on the datasets yields 

the statistically significant correlations highlighted bold in Figure 3. The t-test was performed 

assuming red noise, i.e. modelling the effective sample size according to Equations (1) and (3). 

As outlined above, these estimates are likely conservative in that a red noise (Markov) auto-

correlative process is assumed, which likely underestimates the degrees of freedom in the 

dataset.  

In the longer time series, significant correlations occur between various tuples of variable, 

including (PDO, NINO34) and (AO, NAO, AMM, AMO). NAO is closest to a white noise 

process with a very low lag-1 autocorrelation. Thus, the correlation between NAO and any other 

variable are more likely to be statistically significant because of a relatively high Neff as outlined 

in Section 4.2.  

Additionally, high correlations are found between AMM, AMO, SSO2, and GHG. Note, that 

GHG closely resembles a linear trend. The correlations between (SSO2, GHG) and (AMO, 

AMM) are less pronounced in the longer data set.  

To assess the representativeness of the shorter time period with respect to the longer period, we 

show in the lower left panel of Figure 3 the difference between the correlation coefficients for 

the short and long time series (i.e. the difference between the values shown in the upper right 

and upper left panels of Figure 3). The underlying colours show exactly the difference in 

correlation coefficient whereas the numerical values show the ratio of the two correlation 

coefficients in percent.  

For the pair (PDO, AO), this ratio is 181% which results from the correlation coefficient 

between the two indices being -0.3 for the short time series but only -0.164 for the long time 

series. This ratio can be interpreted as follows: Even though in both, the short and the long time 

series the correlation between PDO and AO is statistically significant, the correlation 

coefficients are different with the correlation coefficient being 81% larger in the short time 

series than in the long time series, thus PDO explains 1.812 = 3.52 times more variance in AO 

in the short time series than in the long time series. Also, since both time series are normalized, 

the correlation coefficients are identical to the slopes of the regression lines between the two 

datasets. Therefore, again for the case (PDO, AO), the slope of a regression between the two 

datasets is a factor of 1.81 different between the short and the long time series.  
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Figure 3: The upper left panel provides the correlation coefficients between the different 

climate indices listed in Table 1 for the 60-years period 1951-2010. The upper right panel 

shows the same statistics for the period 1988-2008. Correlation coefficients that are 

statistically significant at the 95% level assuming red noise are highlighted bold. The lower 

left panel shows the differences in correlation coefficients between the short and the long 

time series (colours) and ratio between those correlation coefficients (numbers) with only 

those coefficients highlighted bold that are statistically significant in both the short and the 

long time series. The values for the lower left panel are given in percentage amounts 

capped at 999%. A value of 999 thus indicates a difference in correlation coefficient 

between the short and long time series of a factor 9.99 or higher (e.g. correlation short of 

0.6, correlation long of 0.05). The lower right plots shows ratios in lagged autocorrelations 

between the short and the long times series as function of autocorrelation lag. The 

background is the autocorrelation coefficient for the long time series, which is also plotted 

in Figure 1 (right panels). 

These results allow to further narrow down the number of stably cross-correlated datasets. 

Setting an ad-hoc criterion of a valid range in the ratio of correlation coefficients to 70%-130%, 

we find that only the pair (NINA34, PDO) and the tuple (AO, NAO, AMM, AMO) are 

statistically significantly correlated in both the long and the short time series and their 

correlation coefficient is sufficiently similar (±30%).  

A similar analysis can be performed on the lag-L autocorrelation coefficients for each time 

series and is shown in Figure 3, lower right panel. For example, the value of 144% for NAO at 

lag-1 indicates that the lag-1 autocorrelation coefficient in the short time series is a factor of 

1.44 higher than for the long time series. With the exception of NAO and, to a lesser extent, 
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AO, the autocorrelation functions of the different indices are rather similar between the long 

and the short time series: up to lag-5 the autocorrelation functions between the short and long 

time series do not differ by more than +/- 30%. As pointed out further up, AO and NAO exhibit 

very weak temporal autocorrelations (i.e. they behave more like white noise). Therefore, lower 

stability of the autocorrelation function is to be expected.  

In summary, significant and stable correlations exist between the pair (NINA34, PDO) and the 

tuple (AO, NAO, AMM, AMO). AO and NAO show a very different behaviour from the rest 

of the indices, in that these two indices exhibit more of a random behaviour than the other 

indices, which are relatively highly temporally auto-correlated. GHG, SSO2, and SSOL exhibit 

a strongly auto-correlated behaviour. GHG resembles a linear trend thus having approximately 

zero degrees of freedom. SSOL is a cyclical function with frequency of the solar cycle (11 

years)-1. 

5.2 Analysis of water vapour datasets 

The analysis in Section 5.1 highlights the strong correlation between ENSO and TCWV. This 

result is corroborated by Figure 4, where the first four temporal Eigenvectors of ERA-Interim 

are compared to NINO34 for the time period 1988 to 2008. One can see the excellent agreement 

between the first Eigenvector and the NINO34 time series.  

 

 

Figure 4: First four temporal eigenvectors of the ERA-Interim TCWV (black curves). The red 

curve shows NINO34 values for comparison. All curves are normalized to zero mean and 

unit standard deviation for visualization. The variance explained by the first four 

eigenvectors is 12.7%, 6.1%, 3.4%, and 3.1%, respectively. 
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Figure 5 shows the empirical orthogonal functions (EOFs) associated with the Eigenvectors 

shown in Figure 4.  

  

  

Figure 5: First four EOFs for ERA-Interim TCWV associated with the eigenvectors shown in 

Figure 4. EOFs are shown normalized by the square root of their respective eigenvalue 

(yielding units of kg/m2 for the EOFs). 

Table 2 shows the correlations between the NINO34 time series and the first Eigenvector of 

each of the TCWV datasets. Results are shown for all surfaces and, separately, for ocean only. 

 

Table 2: Correlation of the first EOF of different TCWV datasets with NINO34. The column 

labelled ‘All’ shows correlations for the entire datasets including ocean, land, and ice - if 

included in the dataset. The column ‘Ocean’ shows the correlations for ocean data points 

that are ice-free over the entire period. 

Dataset 
Correlation with NINA34 

All Ocean 

RSS 0.893 0.893 

HOAPS 0.895 0.895 

NVAP-M 0.752 0.864 

ERA-Interim 0.895 0.889 

MERRA 0.898 0.891 

CFSR 0.879 0.869 

ECE 0.899 0.908 

ESM 0.884 0.903 

 

It is noteworthy that all datasets show very similar correlation coefficients to NINO34 

everywhere, except for NVAP-M, which shows systematically lower correlation coefficients 

with ENSO (NINO34) if land is included. This result will require further analysis and might be 

related to the particular retrieval algorithms used in NVAP-M for TCWV retrievals over land 

surfaces. An indication for this hypothesis is given in the lag-1 autocorrelation, which is 
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unusually high over desert areas as well as Antarctica (see Appendix, Figure 17). The two 

climate models ECE and ESM show results very similar to the other datasets. 

Figure 6 shows correlation results for ERA-Interim against all climate indices as an example. 

Areas exceeding the 95% significance level for red noise are highlighted with thick grey lines. 

Figure 13 to Figure 19 in Appendix A provide analogous information for all other TCWV 

datasets for red as well as for white noise.  

 

Figure 6: Correlation between various climate indices and ERA-Interim TCWV. Thick grey 

isolines show areas with correlations exceeding the 95% significance level for red noise. 

These occur only for NINO34, PDO, AO, and NAO. Thin grey lines show 95% confidence 

levels for white noise. The panel on the lower right shows the lag-1 autocorrelation of 

ERA-Interim. 



VaKaS Final Report  Page 17 

A merged view over all datasets is shown in Figure 7 highlighting those areas where all resp. 

more than half of the datasets show statistically significant correlations with the different 

climate indices. 

 

Figure 7: These plots provide a summary of where the different TCWV datasets significantly 

correlate with the various climate indices (assuming red noise, i.e. using Equation (1) to 

calculate Neff). Regions where at least half of the datasets show significant correlations 

with a given climate index are highlighted blue. Regions where all datasets show 

significant correlations are highlighted red. 
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As expected from the above correlation analysis, the largest areas of coherent correlations 

include the tropical Pacific for NINO34 and the northern Pacific Ocean for PDO. AMM shows 

a larger area in the northern tropical and subtropical Atlantic with high correlations for all 

TCWV datasets. AMO shows large areas of statistically significant correlations against all 

TCWV datasets for that same area as well as for the northern Atlantic. Finally, all datasets are 

significantly correlated with stratospheric SO2 loading for two tongues stretching out into the 

northern and southern Pacific as well as for the northern Atlantic. AO, NAO, GHG, and SOL 

show only very small areas with consistent correlations, if any. A detailed analysis of the 

correlation maps provided for ESM and ECE (Appendix, Figure 18 and Figure 19) shows them 

to be very similar to the other datasets. 

5.3 Assessment of ECE and ESM versus other datasets 

ECE and ESM operated in a ‘climate-mode’ in which only sea ice, sea surface temperatures, 

and external forcings are prescribed. With those lateral boundary conditions the model is 

allowed to develop freely. In addition to these boundary conditions, reanalysis dataset 

(MERRA, CFSR, and ERAI) also assimilate atmospheric observations thereby providing an 

analysis of the actual state of the atmosphere at any given time. Similarly, the observational 

datasets (RSS, HOAPS, and NVAPM) provide estimates of the actual state of the atmosphere. 

Therefore, one can expect the reanalysis and observational datasets to also represent the 

synoptic situation at any given time, while the two climate-mode models cannot be expected to 

provide any information about the actual synoptic situation.  

Contrasting ESM and ECE against the other models might therefore help understand to what 

degree TCWV climatologies are affected by ‘weather’ as opposed to climatological boundary 

conditions such as external forcings and SST. Figure 8 provides the same information as Figure 

7, but is restricted to observational and reanalysis datasets, thus excluding ESM and ECE. 

Comparing Figure 8 to Figure 7, one can see that the inclusion of ECE and ESM reduces the 

areas of agreement between all datasets (less red areas in Figure 7). This effect is particularly 

strong for AO and NAO, with which ESM and ECE show only very weak correlations (see also 

Figure 18 and Figure 19). This result is not surprising as AO and NAO are derived from surface 

pressure fields whereas e.g. PDO, NINO34, and AMM are derived from SST fields. Surface 

pressure is of course intimately connected to weather. Because the two climate-mode models 

are not capable of reproducing weather patterns, it appears unlikely they would correlate well 

with climate indices relying on surface pressure. In contrast, sea surface temperature fields are 

prescribed for all models. To the extent in which SST affects TCWV, ECE and ESM should 

thus react similar to the reanalysis datasets. A similar effect can be seen for GHG and, to a lesser 

extent for SOL.  

While Figure 7 and Figure 8 indicate areas with statistically significant correlations for all 

datasets, these are not separated by positive versus negative correlations. Figure 9 and Figure 

10 are similar to Figure 8 but separate areas with positive and negative correlations. Comparing 

Figure 9 and Figure 10, it becomes clear that for AMO, AMM, GHG and SSO2 agreements 

between the TCWV datasets occur almost only for positive correlations. In contrast, ENSO, 

PDO, AO, and NAO show areas of positive and negative correlations. Thus, in a strongly 

positive ENSO certain regions get moister whereas others get drier agreeably between all 

datasets. In contrast, in a strongly AMM state, all datasets agree the tropical and subtropical 

northern Atlantic gets wetter, but except for a small area in the north-eastern Pacific, there is no 

agreement between models which areas get drier (if any). 

Figure 11 shows the anomaly time series correlation between all indices and all TCWV datasets 

for all areas where the datasets agree on positive correlations (Figure 11, left panel) and negative 

correlations, respectively (Figure 11, right panel). In those areas, where all datasets agree on a 

significant positive correlation with ENSO, MERRA and NVAPM show the lowest correlation 
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(0.73 and 0.79, respectively). ECE and ESM show significantly lower positive correlations with 

AO, NAO, and SOL compared to the other datasets. For the negatively correlated areas a very 

similar picture arises with ESM and ECE less strongly correlated with AO and NAO. In addition 

also AMM and AMO and SSO2 show less strong negative correlations with ESM and ECE for 

the negatively correlated areas.  

In summary:  

 For the climate indices built on atmospheric parameters (AO, NAO), ECE and ESM 

show much weaker correlations than all other models. This is perhaps not surprising 

since the ESM and ECE are allowed to freely form their own ‘weather’.  

 For the climate indices built on SST (NINO34, PDO, AMM, AMO), the two climate-

mode models perform very similar to the other models and datasets especially in 

positively correlated areas.  

 For the forcing indices (SOL, GHG, and SSO2) ECE and ESM show slightly lower 

correlations than the other datasets but results are not consistent. It is unclear what the 

origin of the reduced correlation is. ECE appears to (Willén, pers. comm.) whereas ESM 

appears to include GHG, SSO2, and SOL forcings (Stevens et al., 2013).  
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Figure 8: Same as Figure 7 but excluding ESM and ECE. 
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Figure 9: Same as Figure 8, but only for areas where the correlation between indices and 

water vapour datasets is positive. 
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Figure 10: Same as Figure 8, but only for areas where the correlation between indices and 

water vapour datasets is negative. 
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Figure 11: The left panel shows correlation between climate indices and TCWV datasets for 

regions where all datasets show a significant positive correlation (red areas in Figure 9). 

The right panel shows the same for negative correlations (red areas in Figure 10). For the 

two correlations marked ‘N/A’  no data points exist because the two datasets are only 

defined over land but all red areas for GHG in Figure 10 are over land. 

6 Conclusions 

Eight TCWV datasets were analysed and compared to nine climate indices. All datasets are 

highly correlated with ENSO and show different levels of correlation with other climate indices. 

The two climate models ESM and ECE do not differ significantly from the other datasets, all 

of which either retrieve or assimilate water vapour information directly. 
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8 Appendix A: Additional figures 

 

Figure 12: Same as Figure 7, but using Equation (2) to calculate Neff. 
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Figure 13: Same as Figure 6, but for CSFR. 
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Figure 14: Same as Figure 6, but for MERRA. 
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Figure 15: Same as Figure 6, but for RSS. 
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Figure 16: Same as Figure 6, but for HOAPS. 
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Figure 17: Same as Figure 6, but for NVAPM. 

 



VaKaS Final Report  Page 32 

 

Figure 18: Same as Figure 6, but for EC Earth. 
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Figure 19: Same as Figure 6, but for ESM. 
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9 Appendix B: Description of output data 

The root folder containing all VaKaS deliverables is hosted by DWD6. Inside the root folder, 

project deliverables are stored in a folder structure as follows: 

 

[VAKAS root folder]/data 
[VAKAS root folder]/results/maps_diff_month_since_1970 
[VAKAS root folder]/results/time_series_alldata_regional 
[VAKAS root folder]/results/time_series_climate_index 
[VAKAS root folder]/results/correlation_maps 

 

In the following subsections, we will shortly describe the contents of each folder. 

9.1 [VAKAS root folder]/data 

In order to enable an efficient processing of the investigated water vapour products, the original 

data products have been mapped onto a 1° by 1° longitude / latitude grid (360 x 180) at monthly 

temporal resolution and have then been stored in the NetCDF format. The resulting files (one 

for each of the considered products CSFR, ECE, ERA-Interim, ESM, HOAPS, MERRA, 

NVAPM, RSS) are available under [VAKAS root folder]/data. The file naming convention is: 

 

VAKAS_<dataset_acronym>_<mmyyyy>_<mmyyyy>.nc, 

 

where <dataset_acronym> indicates the considered water vapour product, the first 

(second)<mmyyyy> indicates the start (end) month and year of the period covered by the dataset.  

Example: VAKAS_CFSR_011979_122008.nc contains CFSR re-gridded data for the period 

between January 1979 and December 2008. 

The size of all files in [VAKAS root folder]/data amounts to 679 MB. 

9.2 [VAKAS root folder]/results/maps_diff_month_since_1970 

This folder holds images showing the global distribution of the Total Column Water Vapour 

(TCWV) in units of mm precipitable water. Each image shows the available products for one 

particular month as well the corresponding ensemble average value. The file naming convention 

is  

 

maps_<month since January 1970>.jpg, 

 

where <month since January 1970> is a three digit integer counting the months since the 

beginning of 1970, with January 1970 identified as month 000.  

Example: maps_336.jpg, showing the global TCWV distribution for January 1998 (see Figure 

20). 

                                            
6 Please contact Marc Schroeder at Deutscher Wetterdienst (marc.schroeder@dwd.de) to obtain 
information on how to access the data. 

mailto:marc.schroeder@dwd.de
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Figure 20: Image file “maps_336.jpg” showing the TCWV for all eight considered products 

as well as an all product average for January 1998. 

The corresponding „diff“-files show the difference of each dataset to the ensemble average of 

the month. The filename convention is analogous to the „maps“-files: 

 

diff_<month since January 1970>.jpg 

 

Example: diff_336.jpg (see Figure 21). 

 

Figure 21: Image file diff_337.jpg showing differences from the average for the individual 

products. 
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The number of all files in [VAKAS root folder]/results/maps_diff_month_since_1970 

amounts to 602 (301 map images plus 301 diff images), totalling 142 MB. 

9.3 [VAKAS root folder]/results/time_series_alldata_regional 

These image files in [VAKAS root folder]/results/time_series_alldata_regional combine 

the full time series for specific grid points. The file naming convention is: 

 

ts_lon<lon_idx>_lat<lat_idx>.jpg, 

 

where <lon_idx> is longitude value in degrees plus 180 and <lat_idx> is latitude in degrees 

plus 90. E.g., lat_000 represents the latitude range between 90° S and 89°S and lat_110 

represents the latitude range from 20°N to 21°N. Analogously, lon_250 represents the longitude 

range between 70° E and 71°E. 

Example: ts_lon180_lat140.jpg (see Figure 22). 

Images are provided for every 10-th degree latitude and longitude, amounting to 18 ×36 = 648 

files. The total size of [VAKAS root folder]/results/time_series_alldata_regional amounts 

to 413 MB. 

 

 

Figure 22: Image file “ts_lon180_lat140.jpg” showing the time series for all datasets at the 

grid cell at 0°E and 50°N. 

Shown in each image file are from top to bottom:  

 TCWV value [kg/m2], 

 Relative difference to the ensemble monthly mean [%], 

 Annually averaged TCWV [kg/m2], 
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 Time series corrected for seasonal effects [kg/m2]. 

The inset on the top left indicates the position of the grid box considered. The average annual 

cycle for all investigated time series is shown in the inset at the top right. 

9.4 [VAKAS root folder]/results/time_series_climate_index 

The folder [VAKAS root folder]/results/time_series_climate_index contains time series of 

the six core climate indices considered in this study. The file naming convention is: 

 

<ci_acronym>.jpg, 

 

where <ci_acronym> represents an acronym used to identify a specific climate index.  

Example: nino34.jpg (see Figure 23).  

The number of all files in [VAKAS root folder]/results/time_series_climate_index amounts 

to 6, totalling 0.5 MB. 

N
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Figure 23: Image file"nino34.jpg" showing the long-term time series of the NINO34 climate 

index. The green colour indicates the core VAKAS period 1988-2008. 

9.5 [VAKAS root folder]/results/correlation_maps 

The folder [VAKAS root folder]/results/correlation_maps holds maps showing the 

correlation between observational time series and climate indices. The file naming convention 

is: 

 

corr_map_<data>_<climate>_<period>.jpg, 

 

where <data> is the dataset acronym, <climate> indicates the climate index and <period> 

designates the considered seasonal range.  

For each combination of dataset and core climate index, three periods have been considered: 

jja – June/July/August (northern summer), djf – December/January/February (northern 

winter), as well as the entire year if <period> is empty).  

Example: corr_map_HOAPS_ao_jja.jpg (see Figure 24), representing the correlation map of 

HOAPS with the AO climate index in the northern summer months. 

The number of all files in [VAKAS root folder]/results/correlation_maps amounts to 144, 

totalling 54 MB. 
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Figure 24: Image file “corr_map_HOAPS_AO_jja.jpg” showing the correlation between 

HOAPS and the AO climate index for the northern summer months.  


