Latest results from analyzing the NVAP-M global water data record

John M. Forsythe¹, Thomas H. Vonder Haar², Heather Q. Cronk¹

- ¹Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University Fort Collins, CO
- ² Department of Atmospheric Science, Colorado State University

NVAP-M (NVAP (NASA Water Vapor Project) – MEaSUREs)

Produced under NASA MEaSUREs Program: Making Earth System Data Records for Use in Research Environments

NASA Water Vapor Project – MEaSUREs

- Reanalysis, extension (1988-2009) and replacement of the heritage NVAP (1988-2001) dataset
- **Global (land and ocean)** data designed for weather, climate and hydrology users
- Total (TPW) and layered (LPW) precipitable water
- Removes time-dependent biases caused by dataset and algorithm changes incurred during multi-phase processing.
 - Focus on consistent data inputs and peer reviewed processing algorithms through time.
- Back-propagation of modern observations through the entire data period.
 - Collaboration with AIRS water vapor project at NASA JPL. (E. Fetzer et al.)
- Highly model-independent

Available at NASA Langley Atmospheric Science Data Center (ASDC): <u>https://eosweb.larc.nasa.gov</u> /project/nvap/nvap-m_table

Similar in concept to GPCP, ISCCP, but with three products: <u>Climate</u>, <u>Weather</u>, <u>Ocean</u>.

NVAP-M Climate Daily Average TPW 10 September, 2004

Vonder Haar et al. 2012: Weather and climate analyses using improved global water vapor observations. *Geophys. Res. Lett.*, **39**, L15802. doi:10.1029/2012GL052094.

"NVAP-M" refers to the new NVAP-MEaSUREs data set. "Heritage NVAP" refers to the existing dataset described by Randel et al., 1996

As of April 2015: 309 orders, 135 users

HIRS portion of the product has provided the most challenges

NVAP-M: A Three-Tiered Product Approach

Heritage NVAP begun in early 1990's was "one size fits all" approach.

NVAP-Weather

Used for weather case studies on timescales of days to weeks

- •SSM/I Level 1 C intercalibrated radiances HIRS cloud cleared radiances Radiosonde, GPS since 1997
- AIRS V5 Level 3 TPW and Layered PW
- •Maximizes spatial and temporal coverage
- •Not driven by reduction of timedependent biases

•4x daily

- •1/2 degree resolution
- TPW and layered precipitable water •surface to 700 hPa
 - •700 to 500 hPa
 - •500 to 300 hPa
 - < 300 hPa.

NVAP-Climate

Used for studies of climate change and interannual variability

•SSM/I Level 1 C intercalibrated radiances •HIRS cloud cleared radiances, + AIRS since 2002

Radiosonde

•Consistent inputs through time.

- •Consistent, high quality retrievals.
- •Less emphasis on spatial and temporal coverage

Daily

- 1-degree resolution
- •TPW
- layered precipitable water •surface to 700 hPa
 - 700 to 500 hPa
 - 500 to 300 hPa
 - < 300 hPa

NVAP-Ocean

SSM/I-only. Level 1 C intercalibrated radiances (Berg and Sapiano, CSU)

Supplemental Fields

•Data source code (DSC) map, indicating the sources used in each grid box.

NVAP-M Climate Daily Average TPW 10 September, 2004

At this time

 due to time-varying sampling effects currently under study we can <u>neither</u> prove nor disprove a robust trend in the global water vapor data from the NVAP-M Climate data set (over land and ocean)

Science question: What is the trend error due to the timevarying mix of sensors sampling land/ocean, clear/cloudy?

Number of grid boxes in NVAP-M Climate using each data type

How do these changes affect trend results?

Percentage of Time Data Missing from NVAP-M Climate TPW

Data Witholding Experiments for 1988 – 2009 Trends

NVAP-M Climate as exists: + 0.51 mm / decade

NVAP-Ocean as exists +0.53 mm / decade

Two infrared, one SSM/I per day, no sondes + 0.45 mm / decade

Insufficient

-3.5

Two infrared, one SSM/I per day, No AIRS + 0.48 mm / decade

NVAP-Ocean: One random SSM/I per day +0.51 mm / decade

(mm / decade)

<u>1988 – 2009 d</u>ata

Searching for Breakpoints Using Extreme Values

NVAP-M Climate Area Weighted Maximum TPW Values (1988-2009), Missing Data Threshold: 70%

Maximum TPW (mm)

NVAP-M Climate Area Weighted Minimum TPW Values (1988-2009), Missing Data Threshold: 70%

Useful to check for bad retrievals

Minimum TPW (mm)

Calculated where < 30% of days in a year are missing

NVAP-M Climate Year of Maximum TPW (1988-2009), Missing Data Threshold: 70%, Minimum TPW: 3

Year of Min / Max TPW

Maximum individual retrieval

NVAP-M Climate Year of Minimum TPW (1988-2009), Missing Data Threshold: 70%, Minimum TPW: 3

Minimum individual retrieval

Calculated where < 30% of days in a year are missing

NVAP-M Climate Year of Maximum Annual Average TPW (1988-2009), Missing Data Threshold: 70%, Minimum TPW: 3

NVAP-M Climate Year of Minimum Annual Average TPW (1988-2009), Missing Data Threshold: 70%, Minimum TPW: 3

Possible high bias in NOAA-9/10 over Sahara

Year of Maximum Annual Average TPW

1998 very apparent in tropics due to strong El Nino

Year of Minimum Annual Average TPW

Dominated by
1988 - 1992

Filtered by: < 30% of days in a year missing

1991: Anomalous retrieved TCWV over Sahara

NVAP—M Climate 1998 TPW Standardized Anomaly Annual Data Availability Threshold: None, Min TPW: None

1998: Dominant effect of ENSO

G-VAP Report Section 3.1: Report on Overview of Sensors J. M. Forsythe, E. R. Kursinski, A. Gambacorta and M. Schröder

Sensor	Туре	Platform	Spatial	Number of channels	Intercalibration Level
SSM/I	Microwave Imager	Polar	40 km	7	High
AIRS	Infrared Hyperspectral Sounder	Polar	15 km	2378	High
IASI	Infrared Hyperspectral Sounder	Polar		8461	High
GPS-RO	Radio Occultation Limb Sounding	Middle earth orbit	~200 km along a ray	2	High
HIRS	Infrared Broadband Sounder	Polar	20 km	20	Medium
AMSU-B / MHS	Microwave Sounder	Polar	15 km at nadir	5	Medium
MODIS	Infrared Imager				Medium
MERIS	Infrared Imager	Polar	1 km	15	Medium
AMSR-E	Microwave Imager	Polar	12 km	12	High
тмі	Microwave Imager	Low inclination tropical orbit	10 km	9	High
TMR	Microwave Imager	Polar		3	Medium
SSM/T-2	Microwave Sounder	Polar	50 km	5	Low

Current Status:

- No active NVAP-M project, working on best effort basis.
- Expect to propose reanalysis / extension to NASA when opportunity arises.
- Exploring using GPM as intercalibration for ATMS and DMSP via NOAA support.
- Primary research focus is to detect / understand breakpoints in time series, and to explore the effect of sampling changes (clear/cloudy, land/ocean) through time on TCWV trend results.

Summary

- NVAP-MEaSUREs reprocesses, extends and replaces the original NVAP dataset.
- Data are available at the NASA Langley ASDC.
- Multisensor records of water vapor are challenging, but allow a global depiction of water vapor. The concept of creating different processing paths (Climate, Ocean, Weather) has proven useful for meeting the needs of diverse users.
- Changes in satellite sampling with time continue to hinder the ability to claim a significant robust <u>global</u> trend in TPW from NVAP-M.
- Current experiments in progress to examine the sensitivity of trends to different mixtures of input sensors.

Backup Slides

Journal Acronyms for Total Water Vapor in a Column (July 2013 search)

Acronym	AMS Journals	J. Geophy Res.
TPW	131	36
IPW	13	6
PWAT	23	10
IWV	33	67
TCWV	36	13
PWV	89	103
TWV	12	3
PWC	21	11
IPWV	4	1
PWAV	0	0
VIM	7	0
WVP	27	9
TPWV	2	0
WVPA	0	0
PRW	5	6
LPW (layered)	5	

An Aside: Can we agree on and recommend standardized terminology?

At least 15 different acronyms

From AMS Glossary of Meteorology:

The total precipitable water is that contained in a column of unit cross section extending all of the way from the earth's surface to the "top" of the <u>atmosphere</u>. Mathematically, if x(p) is the <u>mixing</u> ratio at the <u>pressure</u> level, p, then the precipitable water vapor, W, contained in a layer bounded by pressures p_1 and p_2 is given by

$$W = \frac{1}{g} \int_{p_1}^{p_2} x dp,$$